

Long Stratton Bypass – Compound and Haul Road Stabilisation

Project	JJM3015 – Temporary Works Compound Stabilisation	
Location	Long Stratton – Long Stratton Bypass	
Client	Octavious	
Key works delivered	Earthworks including Topsoil Strip, levelling and Capping Stabilisation	
Project Duration	4 Weeks	
Stabilised Area	20,000m2 stabilised	
Earthworks	By JJMac	

PROJECT OVERVIEW

- Agricultural Land -
- The site required approx. 20,000m of Topsoil Strip, Earthworks and In-situ Stabilisation to achieve min 30% CBR
- Client requirements 95% Compaction and 30% CBR Non-Frost Susceptibility
- Independent Design and testing carried out by i2 Laboratories
- Stabilised Area to be decommissioned and returned to landowners on completion of main works

PROJECT CHALLENGES

- The project programme was challenging and with the weather we encountered in march and April being so wet it was difficult to travel on the site. Careful Earthworks to achieve the MCVs
- Binder spreading and mixing had to be very precise to ensure the design CBR would
- The project has a very stringent test and compliance schedule. All target MCV and CBR test were taken daily
- Proximity to other works on site meant very well managed works and deliveries were always required.

ENGINEERING AND SOLUTIONS TO OVERCOME THE CHALLENGES

- Our team worked with the client and advised on the findings of the site won material testing and classification.
- Samples were taken for Lab Testing with Agronomist to develop a Decommissioning Strategy to return the subsoil to its original condition prior to the binder addition.
- Once the site was Topsoil Stripped and levelled, the challenge was to spread and stabilise the host material by mixing with Cement and complying with the stringent testing schedule for the stabilised material.
- Our site team set to work with the Octavious team to develop a system to allow both earthworks and stabilisation to progress efficiently.

Modification and STABILISATION Works

JJMac operate a fleet of very agile equipment.

Tractor mounted Wirtgen 250WS Mixers were selected for this project due to the challenging site conditions earlier on in the project.

Our Dustless Stehr was also utilised for all works near the existing offices during any windy conditions which enabled us to progress works in all conditions.

Earthworks and Stabilisation Works

Capping Layer stabilisation to min 30% using 3.5% by Vol CEMI

ADVANTAGES

The works had numerous advantages to this site.

- Site won material used to make up levels and reducing the need for any off site disposal
- Capping layers and subbase replacement offers huge Reduction of Primary Aggregates
- Reduction of Lorries from the surrounding roads

BENEFITS TO CLIENT

Cost Saving		
50%		
Programme Reduction		
40%		
Vehicle Movements Reduction		
	75%	
Imported Aggregate Reduction		
	80%	
Material Sent To Landfill Reduced By		
		100%
Stone Layer Depth Reduction		
	70%	

