

Ground Stabilisation CASE STUDY

BOURNE PE10 OAU - HAULIERS DEPOT

Project	JJM2481 - Hauliers Depot
Location	Bourne
Client	HZ Logistics
Key works delivered	Ground Stabilisation
Project Duration	JUNE 2020 - 2 WEEKS
Stabilised Area	5,000m ²
Earthworks volume	

PROJECT OVERVIEW

Hauliers Yard and Depot in constant use and in need of reinforcement and new wearing course

PROJECT CHALLENGES

Our team were challenged to re-use oil and fuel contaminated materials that were present in the yard to achieve an environmentally friendly and overall cost-effective project outcome for our client

ENGINEERING AND SOLUTIONS TO OVERCOME THE CHALLENGES

In order to overcome the project challenges, set by the client, our team:

 Carried out trial holes and recovered samples of the materials present to establish the contaminants that were present and that they posed no harm to our workforce or anyone affected by the works

Ground Stabilisation

CASE STUDY

- Laboratory testing and on site CBR testing enabled JJMac to generate a very efficient design solution for our client
- Materials that would ordinarily be sent to landfill and be replaced with imported aggregates were re-engineered in-situ.
- The yard was ripped and all obstructions removed. Our site team then set to work to stabilise and seal the final layer with a mix of and cement blended and finished to create a power layer capping to the yard.

BENEFITS TO CLIENT

Cost Saving		
30%		
Programme Reduction		
50%		
Vehicle Movements Reduction		
	67%	
Imported Aggregate Reduction		
	66%	
Material Sent To Landfill Reduced By		
		100%
Stone Layer Depth Reduction		
	70%	